Part Number Hot Search : 
R6110230 2SC4989 KLKD15 BFR181 BT134 S2540 MS3412 EPA3488
Product Description
Full Text Search
 

To Download MAX19995ETXT Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  general description the max19995 dual-channel downconverter provides up to 9db of conversion gain, +24.8dbm input ip3, +13.3dbm 1db input compression point, and a noise figure as low as 9db for 1700mhz to 2200mhz diversity receiver applications. with an optimized lo frequency range of 1400mhz to 2000mhz, this mixer is ideal for low-side lo injection architectures. high-side lo injec- tion is supported by the max19995a, which is pin-pin and functionally compatible with the max19995. in addition to offering excellent linearity and noise per- formance, the max19995 also yields a high level of component integration. this device includes two dou- ble-balanced passive mixer cores, two lo buffers, a dual-input lo selectable switch, and a pair of differen- tial if output amplifiers. integrated on-chip baluns allow for single-ended rf and lo inputs. the max19995 requires a nominal lo drive of 0dbm and a typical supply current of 297ma at v cc = 5.0v or 212ma at v cc = 3.3v. the max19995/max19995a are pin compatible with the max19985/max19985a series of 700mhz to 1000mhz mixers and pin similar with the max19997a/ max19999 series of 1800mhz to 4000mhz mixers, making this entire family of downconverters ideal for applications where a common pcb layout is used across multiple frequency bands. the max19995 is available in a 6mm x 6mm, 36-pin thin qfn package with an exposed pad. electrical per- formance is guaranteed over the extended temperature range, from t c = -40? to +85?. applications umts/wcdma/lte base stations cdma2000 base stations dcs1800 and edge base stations pcs1900 and edge base stations phs/pas base stations fixed broadband wireless access wireless local loop private mobile radios military systems features  1700mhz to 2200mhz rf frequency range  1400mhz to 2000mhz lo frequency range  1750mhz to 2700mhz lo frequency range (max19995a)  50mhz to 500mhz if frequency range  9db typical conversion gain  9db typical noise figure  +24.8dbm typical input ip3  +13.3dbm typical input 1db compression point  79dbc typical 2rf-2lo spurious rejection at p rf = -10dbm  dual channels ideal for diversity receiver applications  49db typical channel-to-channel isolation  low -3dbm to +3dbm lo drive  integrated lo buffer  internal rf and lo baluns for single-ended inputs  built-in spdt lo switch with 56db lo-to-lo isolation and 50ns switching time  pin compatible with the max19985/max19985a/ max19995a series of 700mhz to 2200mhz mixers  pin similar to the max19997a/max19999 series of 1800mhz to 4000mhz mixers  single +5.0v or +3.3v supply  external current-setting resistors provide option for operating device in reduced-power/reduced- performance mode max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch ________________________________________________________________ maxim integrated products 1 ordering information 19-4253; rev 0; 12/08 for pricing, delivery, and ordering information, please contact maxim direct at 1-888-629-4642, or visit maxim? website at www.maxim-ic.com. cdma2000 is a trademark of telecommunications industry association. part temp range pin-package max19995etx+ -40? to +85? 36 thin qfn-ep* max19995etx+t -40? to +85? 36 thin qfn-ep* pin configuration and typical application circuit appear at end of data sheet. + denotes a lead(pb)-free/rohs-compliant package. * ep = exposed pad. t = tape and reel.
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch 2 _______________________________________________________________________________________ absolute maximum ratings +5.0v supply dc electrical characteristics ( typical application circuit optimized for the dcs/pcs band, v cc = +4.75v to +5.25v, t c = -40? to +85?. r1 = r4 = 806 ? , r2 = r5 = 2.32k ? . typical values are at v cc = +5.0v, t c = +25?, unless otherwise noted. all parameters are production tested.) stresses beyond those listed under ?bsolute maximum ratings?may cause permanent damage to the device. these are stress rating s only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specificatio ns is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. note 1: based on junction temperature t j = t c + ( jc x v cc x i cc ). this formula can be used when the temperature of the exposed pad is known while the device is soldered down to a pcb. see the applications information section for details. the junction temperature must not exceed +150?. note 2: junction temperature t j = t a + ( ja x v cc x i cc ). this formula can be used when the ambient temperature of the pcb is known. the junction temperature must not exceed +150?. note 3: package thermal resistances were obtained using the method described in jedec specification jesd51-7, using a four- layer board. for detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. note 4: t c is the temperature on the exposed pad of the package. t a is the ambient temperature of the device and pcb. v cc to gnd ...........................................................-0.3v to +5.5v lo1, lo2 to gnd ...............................................................?.3v any other pins to gnd...............................-0.3v to (v cc + 0.3v) rfmain, rfdiv, and lo_ input power ..........................+15dbm rfmain, rfdiv current (rf is dc shorted to gnd through a balun)...............................................................50ma continuous power dissipation (note 1) ...............................8.7w ja (notes 2, 3)..............................................................+38?/w jc (notes 1, 3)...............................................................7.4?/w operating case temperature range (note 4) .............................................................-40? to +85? junction temperature ......................................................+150? storage temperature range .............................-65? to +150? lead temperature (soldering, 10s) .................................+300? parameter symbol conditions min typ max units supply voltage v cc 4.75 5 5.25 v supply current i cc total supply current, v cc = +5.0v 297 370 ma losel input high voltage v ih 2v losel input low voltage v il 0.8 v losel input current i ih and i il -10 +10 ? +3.3v supply dc electrical characteristics ( typical application circuit , v cc = +3.0v to +3.6v, t c = -40? to +85?, r1 = r4 = 909 ? , r2 = r5 = 2.49k ? . typical values are at v cc = +3.3v, t c = +25?, unless otherwise noted. all parameters are guaranteed by design and not production tested.) parameter symbol conditions min typ max units supply voltage v cc 3.0 3.3 3.6 v supply current i cc total supply current, v cc = +3.3v 212 ma losel input high voltage v ih 2v losel input low voltage v il 0.8 v
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch _______________________________________________________________________________________ 3 recommended ac operating conditions +5.0v supply ac electrical characteristics ( typical application circuit optimized for the dcs/pcs band, r1 = r4 = 806 ? , r2 = r5 = 2.32k ? , v cc = +4.75v to +5.25v, rf and lo ports are driven from 50 ? sources, p lo = -3dbm to +3dbm, p rf = -5dbm, f rf = 1700mhz to 2000mhz, f lo = 1510mhz to 1810mhz, f if = 190mhz, f rf > f lo , t c = -40? to +85?. typical values are at v cc = +5.0v, p rf = -5dbm, p lo = 0dbm, f rf = 1800mhz, f lo = 1610mhz, f if = 190mhz, t c = +25?, unless otherwise noted.) (note 6) parameter symbol conditions min typ max units rf frequency f rf (note 5) 1700 2200 mhz lo frequency f lo (note 5) 1400 2000 mhz using mini-circuits tc4-1w-17 4:1 transformer as defined in the typical application circuit, if matching components affect the if frequency range (note 5) 100 500 mhz if frequency f if using alternative mini-circuits tc4-1w-7a 4:1 transformer, if matching components affect the if frequency range (note 5) 50 250 mhz lo drive le ve l p lo -3 +3 dbm parameter symbol conditions min typ max units 7911 t c = +25? 7.8 9 10.2 conversion gain g c typical application circuit optimized for umts band (r1 = r4 = 681 ? , r2 = r5 = 1.5k ? ), f lo = 1760mhz, f rf = 1950mhz 8.9 db conversion gain flatness flatness over any one of three frequency bands: f rf = 1710mhz to 1785mhz f rf = 1850mhz to 1910mhz f rf = 1920mhz to 1980mhz ?.1 db gain variation over temperature tc cg f rf = 1700mhz to 2000mhz, f lo = 1510mhz to 1810mhz , f if = 190mhz, t c = -40? to +85? -0.009 db/? f rf = 1700mhz for min value 9.5 12.5 input compression point (note 7) ip 1db typical application circuit optimized for umts band (r1 = r4 = 681 ? , r2 = r5 = 1.5k ? ), f lo = 1760mhz, f if = 190mhz, f rf = 1950mhz 13.3 dbm
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch 4 _______________________________________________________________________________________ +5.0v supply ac electrical characteristics (continued) ( typical application circuit optimized for the dcs/pcs band, r1 = r4 = 806 ? , r2 = r5 = 2.32k ? , v cc = +4.75v to +5.25v, rf and lo ports are driven from 50 ? sources, p lo = -3dbm to +3dbm, p rf = -5dbm, f rf = 1700mhz to 2000mhz, f lo = 1510mhz to 1810mhz, f if = 190mhz, f rf > f lo , t c = -40? to +85?. typical values are at v cc = +5.0v, p rf = -5dbm, p lo = 0dbm, f rf = 1800mhz, f lo = 1610mhz, f if = 190mhz, t c = +25?, unless otherwise noted.) (note 6) parameter symbol conditions min typ max units f rf1 - f rf2 = 1mhz, p rf = -5dbm per tone, f rf = 2000mhz for min value 20.5 23.7 f if = 190mhz, f lo = 1810mhz, f rf = 2000mhz for min value, f rf1 - f rf2 = 1mhz, p rf = -5dbm per tone, t c = +25? to +85? 21.5 23.7 input intercept point iip3 typical application circuit optimized for umts band (r1 = r4 = 681 ? , r2 = r5 = 1.5k ? ), f lo = 1760mhz, f if = 190mhz, f rf = 1950mhz, f rf1 - f rf2 = 1mhz, p rf = -5dbm per tone 24.8 dbm input intercept variation over temperature tc iip3 f rf1 - f rf2 = 1mhz, p rf = -5dbm per tone, t c = -40? to +85? 0.0035 dbm/? single sideband, no blockers present (note 8) 911 f lo = 1610mhz, f if = 190mhz, f rf = 1800mhz, t c = +25?, p lo = 0dbm, single sideband, no blockers present (note 8) 9 9.6 noise figure nf ssb typical application circuit optimized for umts band (r1 = r4 = 681 ? , r2 = r5 = 1.5k ? ), f if = 190mhz, f lo = 1760mhz, f rf = 1950mhz, single sideband, no blockers present 9.3 db noise figure temperature coefficient tc nf single sideband, no blockers present, t c = -40? to +85? 0.016 db/? noise figure with blocker nf b f blocker = 1900mhz, p blocker = +8dbm, f rf = 1800mhz, f lo = 1610mhz, p lo = 0dbm, v cc = +5.0v, t c = +25? (notes 8, 9) 19 20.5 db
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch _______________________________________________________________________________________ 5 +5.0v supply ac electrical characteristics (continued) ( typical application circuit optimized for the dcs/pcs band, r1 = r4 = 806 ? , r2 = r5 = 2.32k ? , v cc = +4.75v to +5.25v, rf and lo ports are driven from 50 ? sources, p lo = -3dbm to +3dbm, p rf = -5dbm, f rf = 1700mhz to 2000mhz, f lo = 1510mhz to 1810mhz, f if = 190mhz, f rf > f lo , t c = -40? to +85?. typical values are at v cc = +5.0v, p rf = -5dbm, p lo = 0dbm, f rf = 1800mhz, f lo = 1610mhz, f if = 190mhz, t c = +25?, unless otherwise noted.) (note 6) parameter symbol conditions min typ max units f rf = 1800mhz, f lo = 1610mhz, p rf = -10dbm (note 8) 54 79 f rf = 1800mhz, f lo = 1610mhz, p rf = -5dbm (note 8) 49 74 f rf = 1800mhz, f lo = 1610mhz, p lo = 0dbm, p rf = -10dbm, v cc = +5.0v, t c = +25? (note 8) 56 79 f rf = 1800mhz, f lo = 1610mhz, p lo = 0dbm, p rf = -5dbm, v cc = +5.0v, t c = +25? (note 8) 51 74 typical application circuit optimized for umts band (r1 = r4 = 681 ? , r2 = r5 = 1.5k ? ), f if = 190mhz, f lo = 1760mhz, f rf = 1950mhz, p rf = -10dbm 79 2rf-2lo spur rejection 2 x 2 typical application circuit optimized for umts band (r1 = r4 = 681 ? , r2 = r5 = 1.5k ? ), f if = 190mhz, f lo = 1760mhz, f rf = 1950mhz, p rf = -5dbm 74 dbc f rf = 1800mhz, f lo = 1610mhz, p rf = -10dbm (note 8) 77 91 f rf = 1800mhz, f lo = 1610mhz, p rf = -5dbm (note 8) 67 81 f rf = 1800mhz, f lo = 1610mhz, p lo = 0dbm, p rf = -10dbm, v cc = +5.0v, t c = +25 o c (note 8) 79 91 f rf = 1800mhz, f lo = 1600mhz, p lo = 0dbm, p rf = -5dbm, v cc = +5.0v, t c = +25? (note 8) 69 81 typical application circuit optimized for umts band (r1 = r4 = 681 ? , r2 = r5 = 1.5k ? ), f if = 190mhz, f lo = 1760mhz, f rf = 1950mhz, p rf = -10dbm 86 3rf-3lo spur rejection 3 x 3 typical application circuit optimized for umts band (r1 = r4 = 681 ? , r2 = r5 = 1.5k ? ), f if = 190mhz, f lo = 1760mhz, f rf = 1950mhz, p rf = -5dbm 76 dbc
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch 6 _______________________________________________________________________________________ +5.0v supply ac electrical characteristics (continued) ( typical application circuit optimized for the dcs/pcs band, r1 = r4 = 806 ? , r2 = r5 = 2.32k ? , v cc = +4.75v to +5.25v, rf and lo ports are driven from 50 ? sources, p lo = -3dbm to +3dbm, p rf = -5dbm, f rf = 1700mhz to 2000mhz, f lo = 1510mhz to 1810mhz, f if = 190mhz, f rf > f lo , t c = -40? to +85?. typical values are at v cc = +5.0v, p rf = -5dbm, p lo = 0dbm, f rf = 1800mhz, f lo = 1610mhz, f if = 190mhz, t c = +25?, unless otherwise noted.) (note 6) parameter symbol conditions min typ max units rf input return loss lo and if terminated into matched impedance, lo on 21 db lo port selected, rf and if terminated into matched impedance 20 lo input return loss lo port unselected, rf and if terminated into matched impedance 19 db if output impedance z if nominal differential impedance of the ic? if outputs 200 ? if return loss rf terminated into 50 ? , lo driven by 50 ? source, if transformed to 50 ? using external components shown in typical application circuit 12.5 db rf-to-if isolation f rf = 1700mhz for min value 30 39 db lo leakage at rf port (notes 8, 10) -31 -24.7 dbm 2lo leakage at rf port (note 8) -20 -16 dbm lo leakage at if port (note 8) -40 -27 dbm rfmain converted power measured at ifd_, relative to ifm_, all unused ports terminated to 50 ? 40 49 channel isolation rfdiv converted power measured at ifm_, relative to ifd_, all unused ports terminated to 50 ? 40 49 db lo-to-lo isolation p lo1 = +3dbm, p lo2 = +3dbm, f lo1 = 1610mhz, f lo2 = 1611mhz 40 56 db lo switching time 50% of losel to if settled within 2 degrees 50 ns +3.3v supply ac electrical characteristics ( typical application circuit . typical values are at v cc = +3.3v, p rf = -5dbm, p lo = 0dbm, f rf = 1800mhz, f lo = 1610mhz, f if = 190mhz, t c = +25?, unless otherwise noted.) (note 6) parameter symbol conditions min typ max units conversion gain g c 8.4 db conversion gain flatness flatness over any one of three frequency bands: f rf = 1710mhz to 1785mhz f rf = 1850mhz to 1910mhz f rf = 1920mhz to 1980mhz ?.1 db g ai n v ar i ati on over tem p er atur etc cg t c = -40? to +85? -0.009 db/?
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch _______________________________________________________________________________________ 7 +3.3v supply ac electrical characteristics (continued) ( typical application circuit . typical values are at v cc = +3.3v, p rf = -5dbm, p lo = 0dbm, f rf = 1800mhz, f lo = 1610mhz, f if = 190mhz, t c = +25?, unless otherwise noted.) (note 6) note 5: not production tested. operation outside this range is possible, but with degraded performance of some parameters. see the typical operating characteristics . note 6: all limits reflect losses of external components, including a 0.65db loss at f if = 190mhz due to the 4:1 impedance trans- former. output measurements were taken at if outputs of the typical application circuit . note 7: maximum reliable continuous input power applied to the rf or if port of this device is +12dbm from a 50 ? source. note 8: guaranteed by design and characterization. note 9: measured with external lo source noise filtered so the noise floor is -174dbm/hz. this specification reflects the effects of all snr degradations in the mixer, including the lo noise as defined in application note 2021: specifications and measurement of local oscillator noise in integrated circuit base station mixers. note 10: limited production testing. parameter symbol conditions min typ max units input compression point ip 1db (note 7) 8.9 dbm input intercept point iip3 f rf1 - f rf2 = 1mhz 18.5 dbm input intercept variation over temperature tc iip3 f rf1 - f rf2 = 1mhz, t c = -40? to +85? 0.0034 dbm/? noise figure nf ssb single sideband, no blockers present 9.0 db noise figure temperature coefficient tc nf single sideband, no blockers present, t c = -40? to +85? 0.016 db/? p rf = -10dbm 73 2rf-2lo spur rejection 2 x 2 p rf = -5dbm 68 dbc p rf = -10dbm 70 3rf-3lo spur rejection 3 x 3 p rf = -5dbm 60 dbc rf input return loss lo on and if terminated 21 db lo port selected, rf and if terminated into matched impedance 16 lo input return loss lo port unselected, rf and if terminated into matched impedance 20 db if return loss rf terminated into 50 ? , lo driven by 50 ? source, if transformed to 50 ? using external components shown in typical application circuit , f if = 190mhz 12.5 db rf-to-if isolation 42 db lo leakage at rf port -40 dbm 2lo leakage at rf port -29 dbm lo leakage at if port -43 dbm rfmain converted power measured at ifd_, relative to ifm_, all unused ports terminated to 50 ? 49 channel isolation rfdiv converted power measured at ifm_, relative to ifd_, all unused ports terminated to 50 ? 49 db lo-to-lo isolation p lo1 = +3dbm, p lo2 = +3dbm, f lo1 = 1610mhz, f lo2 = 1611mhz 55 db lo switching time 50% of lo s e l to if settl ed w i thi n 2 d eg r ees 50 ns
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch 8 _______________________________________________________________________________________ conversion gain vs. rf frequency max19995 toc01 rf frequency (mhz) conversion gain (db) 2300 2100 1900 7 8 9 10 11 6 1700 2500 t c = -30 c t c = +85 c t c = +25 c conversion gain vs. rf frequency max19995 toc02 rf frequency (mhz) conversion gain (db) 2300 2100 1900 7 8 9 10 11 6 1700 2500 p lo = -3dbm, 0dbm, +3dbm conversion gain vs. rf frequency max19995 toc03 rf frequency (mhz) conversion gain (db) 2300 2100 1900 7 8 9 10 11 6 1700 2500 v cc = 4.75v, 5.0v, 5.25v input ip3 vs. rf frequency max19995 toc04 rf frequency (mhz) input ip3 (dbm) 2300 2100 1900 21 22 23 24 25 20 1700 2500 t c = -30 c t c = +85 c p rf = -5dbm/tone t c = +25 c input ip3 vs. rf frequency max19995 toc05 rf frequency (mhz) input ip3 (dbm) 2300 2100 1900 21 22 23 24 25 20 1700 2500 p lo = -3dbm p lo = 0dbm p lo = +3dbm p rf = -5dbm/tone input ip3 vs. rf frequency max19995 toc06 rf frequency (mhz) input ip3 (dbm) 2300 2100 1900 21 22 23 24 25 20 1700 2500 v cc = 5.25v v cc = 4.75v v cc = 5.0v p rf = -5dbm/tone noise figure vs. rf frequency max19995 toc07 rf frequency (mhz) noise figure (db) 2300 2100 1900 8 7 9 10 11 12 6 1700 2500 t c = -30 c t c = +85 c t c = +25 c noise figure vs. rf frequency max19995 toc08 rf frequency (mhz) noise figure (db) 2300 2100 1900 8 7 9 10 11 12 6 1700 2500 p lo = -3dbm, 0dbm, +3dbm typical operating characteristics ( typical application circuit , optimized for the dcs/pcs band , r1 = r4 = 806 ? , r2 = r5 = 2.32k ? , v cc = +5.0v , p lo = 0dbm, p rf = -5dbm, lo is low-side injected for a 190mhz if, t c = +25?, unless otherwise noted.) noise figure vs. rf frequency max19995 toc09 rf frequency (mhz) noise figure (db) 2300 2100 1900 8 7 9 10 11 12 6 1700 2500 v cc = 4.75v, 5.0v, 5.25v
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch _______________________________________________________________________________________ 9 2rf-2lo response vs. rf frequency max19995 toc10 rf frequency (mhz) 2rf-2lo response (dbc) 2300 2100 1900 60 70 80 90 50 1700 2500 t c = -30 c t c = +85 c t c = +25 c p rf = -5dbm 2rf-2lo response vs. rf frequency max19995 toc11 rf frequency (mhz) 2rf-2lo response (dbc) 2300 2100 1900 60 70 80 90 50 1700 2500 p rf = -5dbm p lo = -3dbm p lo = 0dbm p lo = +3dbm 2rf-2lo response vs. rf frequency max19995 toc12 rf frequency (mhz) 2rf-2lo response (dbc) 2300 2100 1900 60 70 80 90 50 1700 2500 p rf = -5dbm v cc = 4.75v, 5.0v, 5.25v 3rf-3lo response vs. rf frequency max19995 toc13 rf frequency (mhz) 3rf-3lo response (dbc) 2300 2100 1900 65 75 85 95 55 1700 2500 p rf = -5dbm t c = -30 c t c = +85 c t c = +25 c 3rf-3lo response vs. rf frequency max19995 toc14 rf frequency (mhz) 3rf-3lo response (dbc) 2300 2100 1900 65 75 85 95 55 1700 2500 p rf = -5dbm p lo = -3dbm, 0dbm, +3dbm typical operating characteristics (continued) ( typical application circuit , optimized for the dcs/pcs band , r1 = r4 = 806 ? , r2 = r5 = 2.32k ? , v cc = +5.0v , p lo = 0dbm, p rf = -5dbm, lo is low-side injected for a 190mhz if, t c = +25?, unless otherwise noted.) 3rf-3lo response vs. rf frequency max19995 toc15 rf frequency (mhz) 3rf-3lo response (dbc) 2300 2100 1900 65 75 85 95 55 1700 2500 p rf = -5dbm v cc = 5.25v v cc = 4.75v v cc = 5.0v input p 1db vs. rf frequency max19995 toc16 rf frequency (mhz) input p 1db (dbm) 2300 2100 1900 12 11 13 14 15 10 1700 2500 t c = +85 c t c = -30 c t c = +25 c input p 1db vs. rf frequency max19995 toc17 rf frequency (mhz) input p 1db (dbm) 2300 2100 1900 12 11 13 14 15 10 1700 2500 p lo = -3dbm, 0dbm, +3dbm input p 1db vs. rf frequency max19995 toc18 rf frequency (mhz) input p 1db (dbm) 2300 2100 1900 12 11 13 14 15 10 1700 2500 v cc = 5.25v v cc = 4.75v v cc = 5.0v
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch 10 ______________________________________________________________________________________ channel isolation vs. rf frequency max19995 toc19 rf frequency (mhz) channel isolation (db) 2300 2100 1900 45 40 35 50 55 60 30 1700 2500 t c = -30 c, +25 c, +85 c channel isolation vs. rf frequency max19995 toc20 rf frequency (mhz) channel isolation (db) 2300 2100 1900 45 40 35 50 55 60 30 1700 2500 p lo = -3dbm, 0dbm, +3dbm channel isolation vs. rf frequency max19995 toc21 rf frequency (mhz) channel isolation (db) 2300 2100 1900 45 40 35 50 55 60 30 1700 2500 v cc = 4.75v, 5.0v, 5.25v lo leakage at if port vs. lo frequency max19995 toc22 lo frequency (mhz) lo leakage at if port (dbm) 2100 1900 1700 -35 -40 -45 -30 -25 -20 -50 1500 2300 t c = -30 c, +25 c, +85 c typical operating characteristics (continued) ( typical application circuit , optimized for the dcs/pcs band , r1 = r4 = 806 ? , r2 = r5 = 2.32k ? , v cc = +5.0v , p lo = 0dbm, p rf = -5dbm, lo is low-side injected for a 190mhz if, t c = +25?, unless otherwise noted.) lo leakage at if port vs. lo frequency max19995 toc23 lo frequency (mhz) lo leakage at if port (dbm) 2100 1900 1700 -35 -40 -45 -30 -25 -20 -50 1500 2300 p lo = -3dbm, 0dbm, +3dbm lo leakage at if port vs. lo frequency max19995 toc24 lo frequency (mhz) lo leakage at if port (dbm) 2100 1900 1700 -35 -40 -45 -30 -25 -20 -50 1500 2300 v cc = 5.25v v cc = 4.75v v cc = 5.0v rf-to-if isolation vs. rf frequency max19995 toc25 rf frequency (mhz) rf-to-if isolation (db) 2300 2100 1900 40 35 45 50 30 1700 2500 t c = -30 c, +25 c, +85 c rf-to-if isolation vs. rf frequency max19995 toc26 rf frequency (mhz) rf-to-if isolation (db) 2300 2100 1900 40 35 45 50 30 1700 2500 p lo = -3dbm, 0dbm, +3dbm rf-to-if isolation vs. rf frequency max19995 toc27 rf frequency (mhz) rf-to-if isolation (db) 2300 2100 1900 40 35 45 50 30 1700 2500 v cc = 4.75v, 5.0v, 5.25v
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch ______________________________________________________________________________________ 11 lo leakage at rf port vs. lo frequency max19995 toc28 lo frequency (mhz) lo leakage at rf port (dbm) 2200 1800 2000 1600 -50 -60 -30 -40 -20 -70 1400 2400 t c = -30 c, +25 c, +85 c lo leakage at rf port vs. lo frequency max19995 toc29 lo frequency (mhz) lo leakage at rf port (dbm) 2200 1800 2000 1600 -50 -60 -30 -40 -20 -70 1400 2400 p lo = -3dbm, 0dbm, +3dbm lo leakage at rf port vs. lo frequency max19995 toc30 lo frequency (mhz) lo leakage at rf port (dbm) 2200 1800 2000 1600 -50 -60 -30 -40 -20 -70 1400 2400 v cc = 4.75v, 5.0v, 5.25v typical operating characteristics (continued) ( typical application circuit , optimized for the dcs/pcs band , r1 = r4 = 806 ? , r2 = r5 = 2.32k ? , v cc = +5.0v , p lo = 0dbm, p rf = -5dbm, lo is low-side injected for a 190mhz if, t c = +25?, unless otherwise noted.) 2lo leakage at rf port vs. lo frequency max19995 toc31 lo frequency (mhz) 2lo leakage at rf port (dbm) 2200 1800 2000 1600 -40 -50 -20 -30 -10 -60 1400 2400 t c = +85 c t c = -30 c t c = +25 c 2lo leakage at rf port vs. lo frequency max19995 toc32 lo frequency (mhz) 2lo leakage at rf port (dbm) 2200 1800 2000 1600 -40 -50 -20 -30 -10 -60 1400 2400 p lo = -3dbm, 0dbm, +3dbm 2lo leakage at rf port vs. lo frequency max19995 toc33 lo frequency (mhz) 2lo leakage at rf port (dbm) 2200 1800 2000 1600 -40 -50 -20 -30 -10 -60 1400 2400 v cc = 4.75v, 5.0v, 5.25v lo switch isolation vs. lo frequency max19995 toc34 lo frequency (mhz) lo switch isolation (db) 2000 2150 1700 1850 1550 50 60 70 40 1400 2300 t c = +85 c t c = -30 c t c = +25 c lo switch isolation vs. lo frequency max19995 toc35 lo frequency (mhz) lo switch isolation (db) 2000 2150 1700 1850 1550 50 60 70 40 1400 2300 p lo = -3dbm, 0dbm, +3dbm lo switch isolation vs. lo frequency max19995 toc36 lo frequency (mhz) lo switch isolation (db) 2000 2150 1700 1850 1550 50 60 70 40 1400 2300 v cc = 4.75v, 5.0v, 5.25v
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch 12 ______________________________________________________________________________________ typical operating characteristics (continued) ( typical application circuit , optimized for the dcs/pcs band , r1 = r4 = 806 ? , r2 = r5 = 2.32k ? , v cc = +5.0v , p lo = 0dbm, p rf = -5dbm, lo is low-side injected for a 190mhz if, t c = +25?, unless otherwise noted.) rf port return loss vs. rf frequency max19995 toc37 rf frequency (mhz) rf port return loss (db) 2300 1900 2100 20 25 10 15 5 0 30 1700 2500 p lo = -3dbm, 0dbm, +3dbm f if = 190mhz if port return loss vs. if frequency max19995 toc38 if frequency (mhz) if port return loss (db) 410 140 230 320 15 10 5 0 20 50 500 f lo = 1610mhz v cc = 4.75v, 5.0v, 5.25v lo selected return loss vs. lo frequency max19995 toc39 lo frequency (mhz) lo selected return loss (db) 2200 1600 1800 2000 15 10 5 0 30 25 20 1400 2400 p lo = -3dbm p lo = 0dbm p lo = +3dbm lo unselected return loss vs. lo frequency max19995 toc40 lo frequency (mhz) lo un selected return loss (db) 2200 2400 1600 1800 2000 15 10 5 0 30 25 20 1400 p lo = -3dbm, 0dbm, +3dbm supply current vs. temperature (t c ) max19995 toc41 temperature ( c) supply current (ma) 65 85 -15 5 25 45 300 320 340 260 280 -35 v cc = 5.25v v cc = 4.75v v cc = 5.0v conversion gain vs. rf frequency (various values of l3 and l6) max19995 toc42 rf frequency (mhz) conversion gain (db) 2500 1900 2100 2300 9 8 10 11 6 7 1700 0 ? , 3.6nh, 6.8nh, 10nh input ip3 vs. rf frequency (various values of l3 and l6) max19995 toc43 rf frequency (mhz) input ip3 (dbm) 2500 1900 2100 2300 23 22 24 25 20 21 1700 0 ? 6.8nh 10nh 3.6nh p rf = -5dbm/tone 2rf-2lo response vs. rf frequency (various values of l3 and l6) max19995 toc44 rf frequency (mhz) 2rf-2lo response (dbc) 2500 1900 2100 2300 70 80 90 50 60 1700 0 ? 6.8nh, 10nh 3.6nh p rf = -5dbm 3rf-3lo response vs. rf frequency (various values of l3 and l6) max19995 toc45 rf frequency (mhz) 3rf-3lo response (dbc) 2500 1900 2100 2300 75 85 95 55 65 1700 0 ? 10nh 6.8nh 3.6nh p rf = -5dbm
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch ______________________________________________________________________________________ 13 typical operating characteristics (continued) ( typical application circuit , optimized for the dcs/pcs band , r1 = r4 = 806 ? , r2 = r5 = 2.32k ? , v cc = +5.0v , p lo = 0dbm, p rf = -5dbm, lo is low-side injected for a 190mhz if, t c = +25?, unless otherwise noted.) channel isolation vs. rf frequency (various values of l3 and l6) max19995 toc46 rf frequency (mhz) channel isolation (db) 2500 1900 2100 2300 45 55 50 60 30 35 40 1700 0 ? 10nh 6.8nh 3.6nh lo leakage at if port vs. lo frequency (various values of l3 and l6) max19995 toc47 lo frequency (mhz) lo leakage at if port (dbm) 2300 1700 1900 2100 -40 -30 -20 -60 -50 1500 0 ? 10nh 6.8nh 3.6nh rf-to-if isolation vs. rf frequency (various values of l3 and l6) max19995 toc48 rf frequency (mhz) rf-to-if isolation (db) 2500 1900 2100 2300 40 50 60 20 30 1700 0 ? 10nh 6.8nh 3.6nh
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch 14 ______________________________________________________________________________________ conversion gain vs. rf frequency max19995 toc49 rf frequency (mhz) conversion gain (db) 2300 2100 1900 7 8 9 10 11 6 1700 2500 t c = -30 c t c = +85 c t c = +25 c conversion gain vs. rf frequency max19995 toc50 rf frequency (mhz) conversion gain (db) 2300 2100 1900 7 8 9 10 11 6 1700 2500 p lo = -3dbm, 0dbm, +3dbm conversion gain vs. rf frequency max19995 toc51 rf frequency (mhz) conversion gain (db) 2300 2100 1900 7 8 9 10 11 6 1700 2500 v cc = 4.75v, 5.0v, 5.25v input ip3 vs. rf frequency max19995 toc52 rf frequency (mhz) input ip3 (dbm) 2300 2100 1900 22 21 23 24 25 26 20 1700 2500 t c = -30 c t c = +85 c p rf = -5dbm/tone t c = +25 c input ip3 vs. rf frequency max19995 toc53 rf frequency (mhz) input ip3 (dbm) 2300 2100 1900 21 22 23 24 25 26 20 1700 2500 p rf = -5dbm/tone p lo = -3dbm, 0dbm, +3dbm input ip3 vs. rf frequency max19995 toc54 rf frequency (mhz) input ip3 (dbm) 2300 2100 1900 21 22 23 24 25 26 20 1700 2500 v cc = 5.25v v cc = 4.75v v cc = 5.0v p rf = -5dbm/tone noise figure vs. rf frequency max19995 toc55 rf frequency (mhz) noise figure (db) 2300 2100 1900 8 7 9 10 11 12 6 1700 2500 t c = -30 c t c = +85 c t c = +25 c noise figure vs. rf frequency max19995 toc56 rf frequency (mhz) noise figure (db) 2300 2100 1900 8 7 9 10 11 12 6 1700 2500 p lo = -3dbm, 0dbm, +3dbm noise figure vs. rf frequency max19995 toc57 rf frequency (mhz) noise figure (db) 2300 2100 1900 8 7 9 10 11 12 6 1700 2500 v cc = 4.75v, 5.0v, 5.25v typical operating characteristics (continued) ( typical application circuit , optimized for the umts band , r1 = r4 = 681 ? , r2 = r5 = 1.5k ? , v cc = +5.0v , p lo = 0dbm, p rf = -5dbm, lo is low-side injected for a 190mhz if, t c = +25?, unless otherwise noted.)
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch ______________________________________________________________________________________ 15 2rf-2lo response vs. rf frequency max19995 toc58 rf frequency (mhz) 2rf-2lo response (dbc) 2300 2100 1900 60 70 80 90 50 1700 2500 t c = -30 c t c = +85 c t c = +25 c p rf = -5dbm 2rf-2lo response vs. rf frequency max19995 toc59 rf frequency (mhz) 2rf-2lo response (dbc) 2300 2100 1900 60 70 80 90 50 1700 2500 p rf = -5dbm p lo = -3dbm p lo = 0dbm p lo = +3dbm 2rf-2lo response vs. rf frequency max19995 toc60 rf frequency (mhz) 2rf-2lo response (dbc) 2300 2100 1900 60 70 80 90 50 1700 2500 v cc = 4.75v, 5.0v, 5.25v p rf = -5dbm 3rf-3lo response vs. rf frequency max19995 toc61 rf frequency (mhz) 3rf-3lo response (dbc) 2300 2100 1900 65 75 85 95 55 1700 2500 t c = -30 c t c = +85 c t c = +25 c p rf = -5dbm 3rf-3lo response vs. rf frequency max19995 toc62 rf frequency (mhz) 3rf-3lo response (dbc) 2300 2100 1900 65 75 85 95 55 1700 2500 p rf = -5dbm p lo = -3dbm, 0dbm, +3dbm 3rf-3lo response vs. rf frequency max19995 toc63 rf frequency (mhz) 3rf-3lo response (dbc) 2300 2100 1900 65 75 85 95 55 1700 2500 p rf = -5dbm v cc = 5.25v v cc = 4.75v v cc = 5.0v input p 1db vs. rf frequency max19995 toc64 rf frequency (mhz) input p 1db (dbm) 2300 2100 1900 12 11 13 14 16 15 10 1700 2500 t c = +85 c t c = -30 c t c = +25 c input p 1db vs. rf frequency max19995 toc65 rf frequency (mhz) input p 1db (dbm) 2300 2100 1900 12 11 13 14 16 15 10 1700 2500 p lo = -3dbm, 0dbm, +3dbm typical operating characteristics (continued) ( typical application circuit , optimized for the umts band , r1 = r4 = 681 ? , r2 = r5 = 1.5k ? , v cc = +5.0v , p lo = 0dbm, p rf = -5dbm, lo is low-side injected for a 190mhz if, t c = +25?, unless otherwise noted.) input p 1db vs. rf frequency max19995 toc66 rf frequency (mhz) input p 1db (dbm) 2300 2100 1900 12 11 13 14 16 15 10 1700 2500 v cc = 5.25v v cc = 4.75v v cc = 5.0v
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch 16 ______________________________________________________________________________________ channel isolation vs. rf frequency max19995 toc67 rf frequency (mhz) channel isolation (db) 2300 2100 1900 45 40 35 50 55 60 30 1700 2500 t c = -30 c, +25 c, +85 c channel isolation vs. rf frequency max19995 toc68 rf frequency (mhz) channel isolation (db) 2300 2100 1900 45 40 35 50 55 60 30 1700 2500 p lo = -3dbm, 0dbm, +3dbm channel isolation vs. rf frequency max19995 toc69 rf frequency (mhz) channel isolation (db) 2300 2100 1900 45 40 35 50 55 60 30 1700 2500 v cc = 4.75v, 5.0v, 5.25v lo leakage at if port vs. lo frequency max19995 toc70 lo frequency (mhz) lo leakage at if port (dbm) 2100 1900 1700 -35 -40 -45 -30 -25 -20 -50 1500 2300 t c = +85 c t c = -30 c, +25 c lo leakage at if port vs. lo frequency max19995 toc71 lo frequency (mhz) lo leakage at if port (dbm) 2100 1900 1700 -35 -40 -45 -30 -25 -20 -50 1500 2300 p lo = -3dbm, 0dbm, +3dbm lo leakage at if port vs. lo frequency max19995 toc72 lo frequency (mhz) lo leakage at if port (dbm) 2100 1900 1700 -35 -40 -45 -30 -25 -20 -50 1500 2300 v cc = 5.25v v cc = 4.75v v cc = 5.0v rf-to-if isolation vs. rf frequency max19995 toc73 rf frequency (mhz) rf-to-if isolation (db) 2300 2100 1900 40 35 45 50 30 1700 2500 t c = -30 c, +25 c, +85 c typical operating characteristics (continued) ( typical application circuit , optimized for the umts band , r1 = r4 = 681 ? , r2 = r5 = 1.5k ? , v cc = +5.0v , p lo = 0dbm, p rf = -5dbm, lo is low-side injected for a 190mhz if, t c = +25?, unless otherwise noted.) rf-to-if isolation vs. rf frequency max19995 toc74 rf frequency (mhz) rf-to-if isolation (db) 2300 2100 1900 40 35 45 50 30 1700 2500 p lo = -3dbm, 0dbm, +3dbm rf-to-if isolation vs. rf frequency max19995 toc75 rf frequency (mhz) rf-to-if isolation (db) 2300 2100 1900 40 35 45 50 30 1700 2500 v cc = 4.75v, 5.0v, 5.25v
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch ______________________________________________________________________________________ 17 lo leakage at rf port vs. lo frequency max19995 toc76 lo frequency (mhz) lo leakage at rf port (dbm) 2000 2200 1800 1600 -50 -40 -60 -30 -20 -70 1400 2400 t c = -30 c, +25 c, +85 c lo leakage at rf port vs. lo frequency max19995 toc77 lo frequency (mhz) lo leakage at rf port (dbm) 2000 2200 1800 1600 -50 -40 -60 -30 -20 -70 1400 2400 p lo = -3dbm, 0dbm, +3dbm lo leakage at rf port vs. lo frequency max19995 toc78 lo frequency (mhz) lo leakage at rf port (dbm) 2000 2200 1800 1600 -50 -40 -60 -30 -20 -70 1400 2400 v cc = 4.75v, 5.0v, 5.25v 2lo leakage at rf port vs. lo frequency max19995 toc79 lo frequency (mhz) 2lo leakage at rf port (dbm) 2200 1800 2000 1600 -40 -50 -20 -30 -10 -60 1400 2400 t c = +85 c t c = -30 c t c = +25 c typical operating characteristics (continued) ( typical application circuit , optimized for the umts band , r1 = r4 = 681 ? , r2 = r5 = 1.5k ? , v cc = +5.0v , p lo = 0dbm, p rf = -5dbm, lo is low-side injected for a 190mhz if, t c = +25?, unless otherwise noted.) 2lo leakage at rf port vs. lo frequency max19995 toc80 lo frequency (mhz) 2lo leakage at rf port (dbm) 2200 1800 2000 1600 -40 -50 -20 -30 -10 -60 1400 2400 p lo = 0dbm, +3dbm p lo = -3dbm 2lo leakage at rf port vs. lo frequency max19995 toc81 lo frequency (mhz) 2lo leakage at rf port (dbm) 2200 1800 2000 1600 -40 -50 -20 -30 -10 -60 1400 2400 v cc = 4.75v, 5.0v, 5.25v lo switch isolation vs. lo frequency max19995 toc82 lo frequency (mhz) lo switch isolation (db) 2000 2150 1700 1850 1550 50 60 70 40 1400 2300 t c = +85 c t c = -30 c t c = +25 c lo switch isolation vs. lo frequency max19995 toc83 lo frequency (mhz) lo switch isolation (db) 2000 2150 1700 1850 1550 50 60 70 40 1400 2300 p lo = -3dbm, 0dbm, +3dbm lo switch isolation vs. lo frequency max19995 toc84 lo frequency (mhz) lo switch isolation (db) 2000 2150 1700 1850 1550 50 60 70 40 1400 2300 v cc = 4.75v, 5.0v, 5.25v
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch 18 ______________________________________________________________________________________ typical operating characteristics (continued) ( typical application circuit , optimized for the umts band , r1 = r4 = 681 ? , r2 = r5 = 1.5k ? , v cc = +5.0v , p lo = 0dbm, p rf = -5dbm, lo is low-side injected for a 190mhz if, t c = +25?, unless otherwise noted.) rf port return loss vs. rf frequency max19995 toc85 rf frequency (mhz) rf port return loss (db) 2300 1900 2100 30 40 20 10 0 50 1700 2500 p lo = -3dbm, 0dbm, +3dbm f if = 190mhz if port return loss vs. if frequency max19995 toc86 if frequency (mhz) if port return loss (db) 410 140 230 320 15 10 5 0 20 50 500 f lo = 1610mhz v cc = 4.75v, 5.0v, 5.25v lo selected return loss vs. lo frequency max19995 toc87 lo frequency (mhz) lo selected return loss (db) 2200 1600 1800 2000 15 10 5 0 30 25 20 1400 2400 p lo = -3dbm p lo = 0dbm p lo = +3dbm lo unselected return loss vs. lo frequency max19995 toc88 lo frequency (mhz) lo un selected return loss (db) 2200 2400 1600 1800 2000 15 10 5 0 30 25 20 1400 p lo = -3dbm, 0dbm, +3dbm supply current vs. temperature (t c ) max19995 toc89 temperature ( c) supply current (ma) 65 85 -15 5 25 45 360 380 400 320 340 -35 v cc = 5.25v v cc = 4.75v v cc = 5.0v
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch ______________________________________________________________________________________ 19 conversion gain vs. rf frequency max19995 toc90 rf frequency (mhz) conversion gain (db) 2500 1900 2100 2300 9 8 10 11 5 6 7 1700 v cc = 3.3v t c = +85 c t c = -30 c t c = +25 c conversion gain vs. rf frequency max19995 toc91 rf frequency (mhz) conversion gain (db) 2500 1900 2100 2300 9 8 10 11 5 6 7 1700 v cc = 3.3v p lo = -3dbm, 0dbm, +3dbm conversion gain vs. rf frequency max19995 toc92 rf frequency (mhz) conversion gain (db) 2500 1900 2100 2300 9 8 10 11 5 6 7 1700 v cc = 3.6v v cc = 3.0v v cc = 3.3v input ip3 vs. rf frequency max19995 toc93 rf frequency (mhz) input ip3 (dbm) 2300 2100 1900 16 14 18 20 22 12 1700 2500 t c = -30 c t c = +85 c t c = +25 c v cc = 3.3v p rf = -5dbm/tone input ip3 vs. rf frequency max19995 toc94 rf frequency (mhz) input ip3 (dbm) 2300 2100 1900 14 16 18 20 22 12 1700 2500 p lo = -3dbm, 0dbm, +3dbm v cc = 3.3v p rf = -5dbm/tone input ip3 vs. rf frequency max19995 toc95 rf frequency (mhz) input ip3 (dbm) 2300 2100 1900 14 16 18 20 22 12 1700 2500 v cc = 3.6v v cc = 3.3v v cc = 3.0v v cc = 3.3v p rf = -5dbm/tone noise figure vs. rf frequency max19995 toc96 rf frequency (mhz) noise figure (db) 2300 2100 1900 8 7 9 10 11 13 12 6 1700 2500 t c = -30 c t c = +85 c t c = +25 c v cc = 3.3v noise figure vs. rf frequency max19995 toc97 rf frequency (mhz) noise figure (db) 2300 2100 1900 8 7 9 10 11 13 12 6 1700 2500 v cc = 3.3v p lo = -3dbm, 0dbm, +3dbm noise figure vs. rf frequency max19995 toc98 rf frequency (mhz) noise figure (db) 2300 2100 1900 8 7 9 10 11 13 12 6 1700 2500 v cc = 3.0v v cc = 3.3v, 3.6v typical operating characteristics (continued) ( typical application circuit , r1 = r4 = 909 ? , r2 = r5 = 2.49k ? , v cc = +3.3v , p lo = 0dbm, p rf = -5dbm, lo is low-side injected for a 190mhz if, t c = +25?, unless otherwise noted.)
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch 20 ______________________________________________________________________________________ 2rf-2lo response vs. rf frequency max19995 toc99 rf frequency (mhz) 2rf-2lo response (dbc) 2300 2100 1900 50 60 70 80 40 1700 2500 t c = -30 c t c = +85 c t c = +25 c p rf = -5dbm v cc = 3.3v 2rf-2lo response vs. rf frequency max19995 toc100 rf frequency (mhz) 2rf-2lo response (dbc) 2300 2100 1900 50 60 70 80 40 1700 2500 p rf = -5dbm p lo = 0dbm, +3dbm p lo = -3dbm v cc = 3.3v 2rf-2lo response vs. rf frequency max19995 toc101 rf frequency (mhz) 2rf-2lo response (dbc) 2300 2100 1900 50 60 70 80 40 1700 2500 p rf = -5dbm v cc = 3.3v v cc = 3.6v v cc = 3.0v 3rf-3lo response vs. rf frequency max19995 toc102 rf frequency (mhz) 3rf-3lo response (dbc) 2300 2100 1900 40 50 60 70 30 1700 2500 t c = -30 c t c = +85 c t c = +25 c p rf = -5dbm v cc = 3.3v 3rf-3lo response vs. rf frequency max19995 toc103 rf frequency (mhz) 3rf-3lo response (dbc) 2300 2100 1900 40 50 60 70 30 1700 2500 p rf = -5dbm v cc = 3.3v p lo = -3dbm, 0dbm, +3dbm 3rf-3lo response vs. rf frequency max19995 toc104 rf frequency (mhz) 3rf-3lo response (dbc) 2300 2100 1900 40 50 60 70 30 1700 2500 p rf = -5dbm v cc = 3.6v v cc = 3.0v v cc = 3.3v typical operating characteristics (continued) ( typical application circuit , r1 = r4 = 909 ? , r2 = r5 = 2.49k ? , v cc = +3.3v , p lo = 0dbm, p rf = -5dbm, lo is low-side injected for a 190mhz if, t c = +25?, unless otherwise noted.) input p 1db vs. rf frequency max19995 toc105 rf frequency (mhz) input p 1db (dbm) 2300 2100 1900 7 6 8 9 12 11 10 5 1700 2500 t c = +85 c t c = -30 c t c = +25 c v cc = 3.3v input p 1db vs. rf frequency max19995 toc106 rf frequency (mhz) input p 1db (dbm) 2300 2100 1900 8 6 7 9 10 12 11 5 1700 2500 p lo = -3dbm, 0dbm, +3dbm v cc = 3.3v input p 1db vs. rf frequency max19995 toc107 rf frequency (mhz) input p 1db (dbm) 2300 2100 1900 8 6 7 9 10 12 11 5 1700 2500 v cc = 3.6v v cc = 3.0v v cc = 3.3v
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch ______________________________________________________________________________________ 21 channel isolation vs. rf frequency max19995 toc108 rf frequency (mhz) channel isolation (db) 2300 2100 1900 45 40 35 50 55 60 30 1700 2500 t c = -30 c, +25 c, +85 c v cc = 3.3v channel isolation vs. rf frequency max19995 toc109 rf frequency (mhz) channel isolation (db) 2300 2100 1900 45 40 35 50 55 60 30 1700 2500 p lo = -3dbm, 0dbm, +3dbm v cc = 3.3v channel isolation vs. rf frequency max19995 toc110 rf frequency (mhz) channel isolation (db) 2300 2100 1900 45 40 35 50 55 60 30 1700 2500 v cc = 3.0v, 3.3v, 3.6v lo leakage at if port vs. lo frequency max19995 toc111 lo frequency (mhz) lo leakage at if port (dbm) 2100 1900 1700 -45 -50 -55 -40 -35 -30 -60 1500 2300 t c = +85 c t c = -30 c t c = +25 c v cc = 3.3v lo leakage at if port vs. lo frequency max19995 toc112 lo frequency (mhz) lo leakage at if port (dbm) 2100 1900 1700 -45 -50 -55 -40 -35 -30 -60 1500 2300 p lo = -3dbm p lo = 0dbm p lo = +3dbm v cc = 3.3v lo leakage at if port vs. lo frequency max19995 toc113 lo frequency (mhz) lo leakage at if port (dbm) 2100 1900 1700 -45 -50 -55 -40 -35 -30 -60 1500 2300 v cc = 3.3v v cc = 3.0v v cc = 3.6v rf-to-if isolation vs. rf frequency max19995 toc114 rf frequency (mhz) rf-to-if isolation (db) 2300 2100 1900 45 35 40 50 60 55 30 1700 2500 t c = -30 c t c = +85 c t c = +25 c v cc = 3.3v typical operating characteristics (continued) ( typical application circuit , r1 = r4 = 909 ? , r2 = r5 = 2.49k ? , v cc = +3.3v , p lo = 0dbm, p rf = -5dbm, lo is low-side injected for a 190mhz if, t c = +25?, unless otherwise noted.) rf-to-if isolation vs. rf frequency max19995 toc115 rf frequency (mhz) rf-to-if isolation (db) 2300 2100 1900 45 35 40 50 60 55 30 1700 2500 v cc = 3.3v p lo = -3dbm, 0dbm, +3dbm rf-to-if isolation vs. rf frequency max19995 toc116 rf frequency (mhz) rf-to-if isolation (db) 2300 2100 1900 45 35 40 50 60 55 30 1700 2500 v cc = 3.0v, 3.3v, 3.6v
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch 22 ______________________________________________________________________________________ lo leakage at rf port vs. lo frequency max19995 toc117 lo frequency (mhz) lo leakage at rf port (dbm) 2000 2200 1800 1600 -50 -40 -60 -30 -20 -70 1400 2400 t c = -30 c t c = +85 c t c = +25 c v cc = 3.3v lo leakage at rf port vs. lo frequency max19995 toc118 lo frequency (mhz) lo leakage at rf port (dbm) 2000 2200 1800 1600 -50 -40 -60 -30 -20 -70 1400 2400 p lo = -3dbm, 0dbm, +3dbm v cc = 3.3v lo leakage at rf port vs. lo frequency max19995 toc119 lo frequency (mhz) lo leakage at rf port (dbm) 2000 2200 1800 1600 -50 -40 -60 -30 -20 -70 1400 2400 v cc = 3.6v v cc = 3.0v v cc = 3.3v 2lo leakage at rf port vs. lo frequency max19995 toc120 lo frequency (mhz) 2lo leakage at rf port (dbm) 2200 1800 2000 1600 -40 -50 -20 -30 -10 -60 1400 2400 t c = -30 c, +25 c, +85 c v cc = 3.3v 2lo leakage at rf port vs. lo frequency max19995 toc121 lo frequency (mhz) 2lo leakage at rf port (dbm) 2200 1800 2000 1600 -40 -50 -20 -30 -10 -60 1400 2400 v cc = 3.3v p lo = -3dbm, 0dbm, +3dbm 2lo leakage at rf port vs. lo frequency max19995 toc122 lo frequency (mhz) 2lo leakage at rf port (dbm) 2200 1800 2000 1600 -40 -50 -20 -30 -10 -60 1400 2400 v cc = 3.6v v cc = 3.0v v cc = 3.3v typical operating characteristics (continued) ( typical application circuit , r1 = r4 = 909 ? , r2 = r5 = 2.49k ? , v cc = +3.3v , p lo = 0dbm, p rf = -5dbm, lo is low-side injected for a 190mhz if, t c = +25?, unless otherwise noted.) lo switch isolation vs. lo frequency max19995 toc123 lo frequency (mhz) lo switch isolation (db) 2000 2150 1700 1850 1550 50 60 70 40 1400 2300 t c = +85 c t c = -30 c t c = +25 c v cc = 3.3v lo switch isolation vs. lo frequency max19995 toc124 lo frequency (mhz) lo switch isolation (db) 2000 2150 1700 1850 1550 50 60 70 40 1400 2300 v cc = 3.3v p lo = -3dbm, 0dbm, +3dbm lo switch isolation vs. lo frequency max19995 toc125 lo frequency (mhz) lo switch isolation (db) 2000 2150 1700 1850 1550 50 60 70 40 1400 2300 v cc = 3.0v, 3.3v, 3.6v
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch ______________________________________________________________________________________ 23 rf port return loss vs. rf frequency max19995 toc126 rf frequency (mhz) rf port return loss (db) 2300 1900 2100 30 40 20 10 0 50 1700 2500 p lo = -3dbm, 0dbm, +3dbm f if = 190mhz v cc = 3.3v if port return loss vs. if frequency max19995 toc86 if frequency (mhz) if port return loss (db) 410 140 230 320 15 10 5 0 20 50 500 f lo = 1610mhz v cc = 3.0v, 3.3v, 3.6v lo selected return loss vs. lo frequency max19995 toc128 lo frequency (mhz) lo selected return loss (db) 2200 1600 1800 2000 15 10 5 0 30 25 20 1400 2400 p lo = -3dbm p lo = 0dbm p lo = +3dbm v cc = 3.3v typical operating characteristics (continued) ( typical application circuit , r1 = r4 = 909 ? , r2 = r5 = 2.49k ? , v cc = +3.3v , p lo = 0dbm, p rf = -5dbm, lo is low-side injected for a 190mhz if, t c = +25?, unless otherwise noted.) lo unselected return loss vs. lo frequency max19995 toc129 lo frequency (mhz) lo un selected return loss (db) 2200 2400 1600 1800 2000 15 10 5 0 30 25 20 1400 p lo = -3dbm, 0dbm, +3dbm v cc = 3.3v supply current vs. temperature (t c ) max19995 toc130 temperature ( c) supply current (ma) 65 85 -15 5 25 45 220 240 260 180 200 -35 v cc = 3.3v v cc = 3.0v v cc = 3.6v
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch 24 ______________________________________________________________________________________ pin description pin name function 1 rfmain main channel rf input. internally matched to 50 ? . requires an input dc-blocking capacitor. 2 tapmain main channel balun center tap. bypass to gnd with 39pf and 0.033? capacitors as close as possible to the pin with the smaller value capacitor closer to the part. 3, 5, 7, 12, 20, 22, 24, 25, 26, 34 gnd ground 4, 6, 10, 16, 21, 30, 36 v cc power supply. bypass to gnd with capacitors shown in the typical application circuit as close as possible to the pin. 8 tapdiv diversity channel balun center tap. bypass to gnd with 39pf and 0.033? capacitors as close as possible to the pin with the smaller value capacitor closer to the part. 9 rfdiv diversity channel rf input. internally matched to 50 ? . requires an input dc-blocking capacitor. 11 ifd_set if diversity amplifier bias control. connect a resistor from this pin to ground to set the bias current for the diversity if amplifier. 13, 14 ifd+, ifd- diversity mixer differential if output. connect pullup inductors from each of these pins to v cc (see the typical application circuit ). 15 ind_extd diversity external inductor connection. connect this pin to ground. for improved rf-to-if and lo-to-if isolation, connect a low-esr 10nh inductor from this pin to ground (see the typical operating characteristics for typical performance vs. inductor value). 17 lo_adj_d lo diversity amplifier bias control. connect a resistor from this pin to ground to set the bias current for the diversity lo amplifier. 18, 28 n.c. no connection. not internally connected. 19 lo1 local oscillator 1 input. this input is internally matched to 50 ? . requires an input dc-blocking capacitor. 23 losel local oscillator select. set this pin to high to select lo1. set to low to select lo2. 27 lo2 local oscillator 2 input. this input is internally matched to 50 ? . requires an input dc-blocking capacitor. 29 lo_adj_m lo main amplifier bias control. connect a resistor from this pin to ground to set the bias current for the main lo amplifier. 31 ind_extm main external inductor connection. connect this pin to ground. for improved rf-to-if and lo-to-if isolation, connect a low-esr 10nh inductor from this pin to ground (see the typical operating characteristics for typical performance vs. inductor value). 32, 33 ifm-, ifm+ main mixer differential if output. connect pullup inductors from each of these pins to v cc (see the typical application circuit ). 35 ifm_set if main amplifier bias control. connect a resistor from this pin to ground to set the bias current for the main if amplifier. ?p exposed pad. internally connected to gnd. solder this exposed pad to a pcb pad that uses multiple ground vias to provide heat transfer out of the device into the pcb ground planes. these multiple via grounds are also required to achieve the noted rf performance.
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch ______________________________________________________________________________________ 25 detailed description the max19995 is a dual-channel downconverter designed to provide 9db of conversion gain, +24.8dbm input ip3, +13.3dbm 1db input compres- sion point, and a noise figure of 9db. in addition to its high-linearity performance, the max19995 achieves a high level of component integra- tion. the device integrates two double-balanced mixers for two-channel downconversion. both the main and diversity channels include a balun and matching cir- cuitry to allow 50 ? single-ended interfaces to the rf ports and the two lo ports. an integrated single-pole, double-throw (spdt) switch provides 50ns switching time between the two lo inputs, with 56db of lo-to-lo isolation and -31dbm of lo leakage at the rf port. furthermore, the integrated lo buffers provide a high drive level to each mixer core, reducing the lo drive required at the max19995? inputs to a range of -3dbm to +3dbm. the if ports for both channels incorporate differential outputs for downconversion, which is ideal for providing enhanced 2rf-2lo performance. specifications are guaranteed over broad frequency ranges to allow for use in wcdma/lte, dcs1800/ pcs1900 gsm/edge, and cdma2000 base stations. the max19995 is specified to operate over an rf input range of 1700mhz to 2200mhz, an lo range of 1400mhz to 2000mhz, and an if range of 50mhz to 500mhz. the external if components set the lower fre- quency range. operation beyond these ranges is pos- sible; see the typical operating characteristics for additional information. although this device is opti- mized for low-side lo injection applications, it can operate in high-side lo injection modes as well. however, performance degrades as f lo continues to increase. for increased high-side lo performance, refer to the max19995a data sheet. rf port and balun the rf input ports of both the main and diversity chan- nels are internally matched to 50 ? , requiring no exter- nal matching components. a dc-blocking capacitor is required as the input is internally dc shorted to ground through the on-chip balun. the rf port input return loss is typically better than 16db over the rf frequency range of 1700mhz to 2200mhz. lo inputs, buffer, and balun the max19995 is optimized for a 1400mhz to 2000mhz lo frequency range. as an added feature, the max19995 includes an internal lo spdt switch for use in frequency-hopping applications. the switch selects one of the two single-ended lo ports, allowing the external oscillator to settle on a particular frequency before it is switched in. lo switching time is typically 50ns, which is more than adequate for typical gsm applications. if frequency hopping is not employed, simply set the switch to either of the lo inputs. the switch is controlled by a digital input (losel), where logic-high selects lo1 and logic-low selects lo2. lo1 and lo2 inputs are internally matched to 50 ? , requir- ing only 39pf dc-blocking capacitors. if losel is connected directly to a logic source, then voltage must be applied to v cc before digital logic is applied to losel to avoid damaging the part. alternatively, a 1k ? resistor can be placed in series at the losel to limit the input current in applications where losel is applied before v cc . the main and diversity channels incorporate a two- stage lo buffer that allows for a wide-input power range for the lo drive. the on-chip low-loss baluns, along with lo buffers, drive the double-balanced mix- ers. all interfacing and matching components from the lo inputs to the if outputs are integrated on chip. high-linearity mixer the core of the max19995 dual-channel downconverter consists of two double-balanced, high-performance passive mixers. exceptional linearity is provided by the large lo swing from the on-chip lo buffers. when com- bined with the integrated if amplifiers, the cascaded iip3, 2rf-2lo rejection, and noise figure performance are typically +24.8dbm, 79dbc, and 9db, respectively.
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch 26 ______________________________________________________________________________________ differential if the max19995 has an if frequency range of 50mhz to 500mhz, where the low-end/high-end frequency depends on the frequency response of the external if components. note that these differential ports are ideal for providing enhanced iip2 performance. single- ended if applications require a 4:1 (impedance ratio) balun to transform the 200 ? differential if impedance to a 50 ? single-ended system. after the balun, the return loss is typically 12.5db. the user can use a dif- ferential if amplifier on the mixer if ports, but a dc block is required on both ifd+/ifd- and ifm+/ifm- ports to keep external dc from entering the if ports of the mixer. applications information input and output matching the rf and lo inputs are internally matched to 50 ? . no matching components are required. the rf port input return loss is typically better than 16db over the rf frequency range of 1700mhz to 2200mhz and return loss at the lo ports are typically better than 16db over the entire lo range. rf and lo inputs require only dc-blocking capacitors for interfacing. the if output impedance is 200 ? (differential). for evaluation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance to a 50 ? single-ended output (see the typical application circuit ). reduced-power mode each channel of the max19995 has two pins (lo_adj_, if_set) that allow external resistors to set the internal bias currents. nominal values for these resistors are given in table 1. larger value resistors can be used to reduce power dissipation at the expense of some performance loss. see the typical operating characteristics to evaluate the biasing vs. performance tradeoff. if ?% resistors are not readily available, ?% resistors may be substituted. significant reductions in power consumption can also be realized by operating the mixer with an optional supply voltage of +3.3v. doing so reduces the overall power consumption by up to 62%. see the +3.3v supply ac electrical characteristics and the relevant +3.3v curves in the typical operating characteristics section. ind_ext_ inductors for applications requiring optimum rf-to-if and lo-to- if isolation, connect low-esr inductors from ind_ext_ (pins 15 and 31) to ground. when improved isolation is not required, connect ind_ext_ to ground using a 0 ? resistance. see the typical operating characteristics to evaluate the isolation vs. inductor value tradeoff. layout considerations a properly designed pcb is an essential part of any rf/microwave circuit. keep rf signal lines as short as possible to reduce losses, radiation, and inductance. the load impedance presented to the mixer must be such that any capacitance from both if- and if+ to ground does not exceed several picofarads. for the best performance, route the ground pin traces directly to the exposed pad under the package. the pcb exposed pad must be connected to the ground plane of the pcb. it is suggested that multiple vias be used to connect this pad to the lower-level ground planes. this method provides a good rf/thermal-conduction path for the device. solder the exposed pad on the bottom of the device package to the pcb. the max19995 evaluation kit can be used as a reference for board layout. gerber files are available upon request at www.maxim-ic.com . power-supply bypassing proper voltage-supply bypassing is essential for high- frequency circuit stability. bypass each v cc pin and tapmain/tapdiv with the capacitors shown in the typical application circuit (see table 1 for component values). place the tapmain/tapdiv bypass capacitors to ground within 100 mils of the pin. exposed pad rf/thermal considerations the exposed pad (ep) of the max19995? 36-pin thin qfn-ep package provides a low thermal-resistance path to the die. it is important that the pcb on which the max19995 is mounted be designed to conduct heat from the ep. in addition, provide the ep with a low- inductance path to electrical ground. the ep must be soldered to a ground plane on the pcb, either directly or through an array of plated via holes.
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch ______________________________________________________________________________________ 27 table 1. component values component value description c1, c2, c7, c8, c14, c16 39pf microwave capacitors (0402) c3, c6 0.033? microwave capacitors (0603) c4, c5 not used c9, c13, c15, c17, c18 0.01? microwave capacitors (0402) c10, c11, c12, c19, c20, c21 150pf microwave capacitors (0603) l1, l2, l4, l5 330nh wire-wound high-q inductors (0805) l3, l6 10nh wire-wound high-q inductors (0603). smaller values can be used at the expense of some performance loss (see the typical operating characteristics) . 806 ? ? 1% r esi stor s ( 0402) . u sed for d c s/pc s b a n d , v c c = +5 .0 v ap p l i cati ons. lar g er val ues can b e used to r ed uce p ow er at the exp ense of som e p er for m ance l oss. 681 ? ?% resistors (0402). used for umts band, v cc = +5.0v applications. larger values can be used to reduce power at the expense of some performance loss. r1, r4 909 ? ?% resistors (0402). used for v cc = +3.3v applications. 2.32k ? ? 1% r esi stor s ( 0402) . u sed for d c s/pc s b a n d , v c c = +5 .0 v ap p l i cati ons. lar g er val ues can b e used to r ed uce p ow er at the exp ense of som e p er for m ance l oss. 1.5k ? ?% resistors (0402). used for umts band, v cc = +5.0v applications. larger values can be used to reduce power at the expense of some performance loss. r2, r5 2.49k ? ?% resistors (0402). used for v cc = +3.3v applications. r3, r6 0 ? 0 ? resistors (1206) t1, t2 4:1 transformers (200:50) u1 max19995 ic
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch 28 ______________________________________________________________________________________ typical application circuit rf main input rf div input c2 c3 c1 + c8 c9 c13 c17 c18 r1 v cc l2 l1 r3 c20 c19 if main output t1 c16 r2 l3 lo2 c14 lo1 4:1 4:1 v cc v cc v cc v cc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 28 29 30 31 32 33 34 35 36 19 20 21 22 23 24 25 26 27 lo2 v cc gnd v cc gnd gnd tapdiv tapmain rfmain rfdiv exposed pad ifd_set gnd ind_extd lo_adj_d n.c. v cc v cc n.c. lo_adj_m v cc ind_extm gnd ifm_set ifd+ ifd- v cc ifm+ ifm- lo1 losel gnd gnd gnd gnd gnd v cc max19995 c4 c7 c6 c5 v cc v cc c21 lo select c15 v cc r5 r4 v cc l4 l5 r6 l6 c10 c11 t2 if div output c12
max19995 dual, sige, high-linearity, 1700mhz to 2200mhz downconversion mixer with lo buffer/switch maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a maxim product. no circu it patent licenses are implied. maxim reserves the right to change the circuitry and specifications without notice at any time. maxim integrated products, 120 san gabriel drive, sunnyvale, ca 94086 408-737-7600 ____________________ 29 2008 maxim integrated products is a registered trademark of maxim integrated products, inc. pin configuration/functional diagram 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 28 29 30 31 32 33 34 35 36 19 20 21 22 23 24 25 26 27 lo2 v cc gnd v cc gnd gnd tapdiv tapmain rfmain rfdiv exposed pad ifd_set gnd ind_extd lo_adj_d n.c. v cc v cc n.c. lo_adj_m v cc ind_extm gnd ifm_set ifd+ ifd- v cc ifm+ ifm- lo1 losel gnd gnd gnd gnd gnd v cc max19995 exposed pad on the bottom of the package thin qfn (exposed pad) 6mm x 6mm top view + chip information process: sige bicmos package information for the latest package outline information and land patterns, go to www.maxim-ic.com/packages . package type package code document no. 36 thin qfn-ep t3666+2 21-0141


▲Up To Search▲   

 
Price & Availability of MAX19995ETXT

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X